quickmenu
PC ¸®ºä Ȩ  

³ú½Å°æ ¸ð¹æÇÑ ÀÚü ÇнÀ Ĩ, ÀÎÅÚ ·ÎÀÌÈ÷(Loihi) ´º·Î¸ðÇÈ Ä¨ ¹ßÇ¥

2017-09-26 18:02
À̼ö¿ø ¼ö¼®±âÀÚ swlee@bodnara.co.kr

 

ÀÎÅÚ(Intel)ÀÌ ÀΰøÁö´É(AI) °¡¼ÓÈ­¸¦ À§ÇÑ ÃÖÃÊÀÇ ÀÚü ÇнÀÇü(Self-Learning) ĨÀ» ¹ßÇ¥Çß´Ù.

ÀÎÅÚÀº 25ÀÏ(ÇöÁö½Ã°£) 8¼¼´ë µ¥½ºÅ©Å¾ ÄÚ¾î ÇÁ·Î¼¼¼­ ¹× 14/17/18ÄÚ¾î HEDT(High-end Desktop) ÄÚ¾î X ÇÁ·Î¼¼¼­ Ãâ½Ã ¹ßÇ¥¿Í ÇÔ²² ¾÷°è ÃÖÃÊÀÇ ÀÚü ÇнÀ ĨÀÎ ÄÚµå³×ÀÓ Loihi(·ÎÀÌÈ÷) Å×½ºÆ® ĨÀ» ¹ßÇ¥Çß´Ù.

ÀÎÅÚÀº º¹ÀâÇÑ °áÁ¤ÀÌ ´õ »¡¸® ÀÌ·ïÁö°í ±¸Á¶È­µÇÁö ¾ÊÀº ÀÚ¿¬½º·¯¿î µ¥ÀÌÅÍÀÇ ¼öÁý, ºÐ¼® ¹× ÀÇ»ç °áÁ¤¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϸ鼭 °íÀüÀûÀÎ CPU ¹× GPU ¾ÆÅ°ÅØÃ³¸¦ ¶Ù¾î³ÑÀ» ¼ö ÀÖ´Â ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù¸ç, PC¿Í ¼­¹ö¸¦ ³Ñ¾î ÄÄÇ»ÆÃÀ» ÁÖµµÇϱâ À§ÇØ Áö³­ 6³â µ¿¾È °íÀüÀûÀÎ ÄÄÇ»ÆÃ Ç÷§ÆûÀ» °¡¼ÓÈ­ ÇÒ ¼ö Àִ Ư¼ö ¾ÆÅ°ÅØÃ³¸¦ ¿¬±¸Çؿ԰í ÃÖ±Ù ÀΰøÁö´É ¹× ½Å°æ°úÇп¡ ´ëÇÑ ÅõÀÚ¿Í ¿¬±¸ °³¹ßÀ» ¾Õ´ç°å´Ù°í ¼³¸íÇß´Ù.

 

±â°èÇнÀ ´ë½Å Àΰ£ÀÇ ³ú¸¦ ¸ð¹æÇÑ ÀÚü ÇнÀ Ĩ °³¹ß

±âÁ¸ÀÇ ±â°è ÇнÀ(Machine Learning) ±â¹Ý ½ÉÃþ ÇнÀ(Deep Learning)Àº µ¥ÀÌÅ͸¦ »ç¿ëÇØ Ãß·ÐÀ» °ÅµìÇϸ鼭 ½Ã°£ÀÌ Áö³¯¼ö·Ï ¶È¶ÈÇØÁö´Â ¹æ½ÄÀ̾úÁö¸¸, ´ë·®ÀÇ ±³À°¿ë µ¥ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÏ°í Æ¯Á¤ ¿ä¼Ò¿Í »óȲÀ» ±¸Ã¼ÀûÀ¸·Î °í·ÁÇÏÁö ¾ÊÀº °æ¿ì ÀϹÝÈ­Çϰųª °³ÀÎÈ­µÈ ¼­ºñ½º¸¦ Á¦°øÇϱ⠾î·Á¿î ºÐ¾ßµµ ÀÖ¾ú´Ù.

¿¹¸¦ µé¾î ½É¹Ú¼ö¸¦ ÃøÁ¤ÇÒ °æ¿ì °³°³ÀÎÀÇ ½É¹Ú¼ö¿Í ¿îµ¿·®, »óȲÀÌ ´Ù¸£±â ¶§¹®¿¡ ´Ü¼øÇÑ ±â°è ÇнÀ ¸¸À¸·Î´Â Á¤»óÀûÀÎ ÆÐÅϰú ÀÏÄ¡ÇÏÁö ¾Ê´Â °ÍÀ» ã±â ¾î·Æ´Ù.

±×·¯³ª ³ú½Å°æÀ» ¸ð¹æÇÑ ÀÚü ÇнÀ ĨÀº Á¶±ë ÈÄ, ½Ä»ç ÈÄ, Ãëħ Àü°ú °°Àº ´Ù¾çÇÑ Á¶°Ç¿¡¼­ »ç¶÷ÀÇ ½ÉÀå ¹Úµ¿À» ÆÇµ¶ÇØ Á¤»óÀûÀÎ ½ÉÀå ¹Úµ¿À» ÆÇ´ÜÇϰí, Á¤»óÀûÀÎ ÆÐÅϰú ÀÏÄ¡ÇÏÁö ¾Ê´Â ½É¹Ú ÃøÁ¤ µ¥ÀÌÅ͸¦ ¸ð´ÏÅ͸µ Çϰųª »ç¿ëÀÚ¿¡ ¸ÂÃç °³ÀÎÈ­ ÇÒ ¼ö ÀÖ´Ù.

ÀÎÅÚÀº ÀÌ °°Àº À¯ÇüÀÇ ³í¸®°¡ »çÀ̹ö º¸¾È¿¡µµ Àû¿ëµÉ ¼ö ÀÖÀ¸¸ç, ÀÚü ÇнÀ ĨÀÌ Å¾ÀçµÈ ½Ã½ºÅÛÀÌ ´Ù¾çÇÑ »óȲ¿¡¼­ Á¤»óÀûÀÎ °á°ú¸¦ ÇнÀÇ߱⠶§¹®¿¡ µ¥ÀÌÅÍ ½ºÆ®¸²ÀÇ ºñÁ¤»ó ¶Ç´Â Â÷ÀÌ·Î ÀÎÇØ ¹ß»ýÇÏ´Â À§¹Ý ÇàÀ§³ª ÇØÅ·À» ½Äº°ÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀ̶ó°í ¼³¸íÇß´Ù.

 

ÀÎÅÚ ÃÖÃÊ ´º·Î¸ðÇÈ Ä¨ Loihi Ư¡Àº?

ÀÎÅÚ ¿¬±¸¼Ò´Â ¹ÝµµÃ¼ ¼³°èÀÇ ±âÃÊ ÀÛ¾÷À¸·Î À¯¸íÇÑ CalTechÀÇ Carver Mead ±³¼ö¿Í ÇÔ²² ³úÀÇ ±â´ÉÀ» ¸ð¹æÇÑ ÃÖÃÊÀÇ ÀÚü ÇнÀ ±â´ÉÀ» °®Ãá ´º·Î¸ðÇÈ Ä¨(neuromorphic chip) ÄÚµå³×ÀÓ Loihi¸¦ °³¹ßÇß´Ù.

´º·Î¸ðÇÈ Ä¨ ¸ðµ¨Àº ŸÀֿ̹¡ µû¶ó º¯Á¶µÉ ¼ö ÀÖ´Â ½ºÆÄÀÌÅ©¿Í ÇÃ¶ó½ºÆ½ ½Ã³À½º¸¦ »ç¿ëÇØ ´º·±ÀÌ Åë½ÅÇϰí ÇнÀÇÏ´Â ¹æ¹ý¿¡¼­ ¿µ°¨À» ¾ò¾úÀ¸¸ç, ÀÌ´Â ÄÄÇ»ÅͰ¡ ÆÐÅϰú ¿¬°áÀ» ±â¹ÝÀ¸·Î ÀÚ°¡ ±¸¼ºÇϰí ÀÇ»ç °áÁ¤À» ³»¸®´Âµ¥ µµ¿òÀ» ÁØ´Ù.

ÀÎÅÚ 14nm °øÁ¤ ±â¼ú·Î Á¦ÀÛµÈ Loihi Å×½ºÆ® ĨÀº ³úÀÇ ±âº» ¸ÅÄ¿´ÏÁòÀ» ¸ð¹æÇÑ µðÁöÅРȸ·Î°¡ Æ÷ÇԵǾî ÀÖ¾î ±â°è ÇнÀº¸´Ù ºü¸£°í È¿À²ÀûÀ¸·Î ¼öÇàÇϸ鼭 ´õ ³·Àº ÄÄÇ»ÆÃ ¼º´ÉÀ» ÇÊ¿ä·Î ÇÑ´Ù. ÃÑ 13¸¸°³ÀÇ ´º·±°ú 1¾ï 3,300¸¸°³ÀÇ ½Ã³À½ºÀÇ Ã³¸® ´É·ÂÀ» Á¦°øÇϸç, ¿ÏÀüÇÑ ºñµ¿±âÀû ´º·Î¸ðÇÈ ¸Å´Ï ÄÚ¾î ¸Þ½¬¿¡ ±¸ÃàµÇ¾î °¢ ´º·±Àº ¼öõ °³ÀÇ ´Ù¸¥ ´º·±°ú Åë½ÅÇÒ ¼ö ÀÖ´Ù.

°³º° ´º·Î¸ðÇÈ ÄÚ¾î´Â µ¿ÀÛ Áß¿¡ ³×Æ®¿öÅ© ¸Å°³ º¯¼ö¸¦ Á¶Á¤Çϰí Áöµµ ÇнÀ, ÀÚÀ² ÇнÀ, °­È­ ÇнÀ ¹× ±âŸ ÇнÀ ÆÐ·¯´ÙÀÓÀ» Áö¿øÇϱâ À§ÇÑ ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ ÇнÀ ¿£ÁøÀÌ Æ÷ÇԵǾî ÀÖ´Ù.

¶ÇÇÑ °æ·Î °èȹ(path planning), Á¦¾à ¸¸Á·(constraint satisfaction), ½ºÆÄ½º ÄÚµù(sparse coding), »çÀü ÇнÀ(dictionary learning), µ¿Àû ÆÐÅÏ ÇнÀ ¹× Àû¿ë(dynamic pattern learning and adaptation) µîÀ» Æ÷ÇÔÇÑ ¹®Á¦¿¡ ´ëÇØ È¿À²ÀÌ ³ôÀº ¿©·¯ ¾Ë°í¸®ÁòÀÇ °³¹ß ¹× Å×½ºÆ®¸¦ ÇÒ ¼ö ÀÖ´Ù.

 

ÀÏ¹Ý ½Å°æ¸Á ±â¼úº¸´Ù ºü¸£°í ¿¡³ÊÁö È¿À²¼º ³ôÀ» °Í

Loihi Å×½ºÆ® ĨÀº ¸Å¿ì À¯¿¬ÇÑ ¿ÂĨ ÇнÀ ´É·ÂÀ» Á¦°øÇÏ¸ç ±³À° ¹× Ãß·Ð ±â´ÉÀ» ´ÜÀÏ Ä¨¿¡ °áÇÕÇß´Ù. µû¶ó¼­ Ŭ¶ó¿ìµåÀÇ ´ÙÀ½ ¾÷µ¥ÀÌÆ®¸¦ ±â´Ù¸®Áö ¾Ê°í ½Ç½Ã°£À¸·Î ±â°è¸¦ ÀÚÀ²ÀûÀ¸·Î Àû¿ëÇÒ ¼ö ÀÖ´Ù.

¿¬±¸ÀÚµéÀº ±â°è ÇнÀ¿¡ »ç¿ëµÇ´Â '¼Õ±Û¾¾ ¼ýÀÚ(MNIST digit) ÀνÄ' ¹®Á¦¸¦ ÇØ°áÇÒ ¶§ ÁÖ¾îÁø Á¤È®µµ¸¦ ´Þ¼ºÇϱâ À§ÇÑ ÃÑ ¿¬»êÀ» ÃøÁ¤ÇÑ °á°ú ´Ù¸¥ ÀϹÝÀûÀÎ ½ºÆÄÀÌÅ© ½Å°æ¸Á¿¡ ºñÇØ 100¸¸¹è Çâ»óµÈ ¼Óµµ·Î ÇнÀ ´É·ÂÀ» Áõ¸íÇßÀ¸¸ç, ³ª¼±Çü ½Å°æ¸Á ³×Æ®¿öÅ©(convolutional neural networks)³ª µö·¯´× ½Å°æ ³×Æ®¿öÅ©(deep learning neural networks) °°Àº ±â¼ú¿¡ ºñÇØ µ¿ÀÏÇÑ ÀÛ¾÷¿¡¼­ ÈξÀ ÀûÀº ¸®¼Ò½º¸¦ »ç¿ëÇÑ´Ù°í ¾ð±ÞÇß´Ù.

ÀÎÅÚÀº Loihi Å×½ºÆ® ĨÀÇ ÇÁÅä·ÎŸÀÔ ÀÚü ÇнÀ ±â´ÉÀÌ °³ÀÎ¿ë ·Îº¿ »Ó¸¸ ¾Æ´Ï¶ó ÀÚµ¿Â÷ ¹× »ê¾÷¿ë ¾ÖÇø®ÄÉÀ̼Çó·³ ºñ ±¸Á¶ÀûÀΠȯ°æ¿¡¼­ ÀÚÀ²ÀûÀÎ ÀÛµ¿°ú Áö¼ÓÀûÀÎ ÇнÀÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ´Â ºÐ¾ß¸¦ ¹ßÀü½Ãų ¼ö ÀÖ´Â ¾öû³­ ÀáÀç·ÂÀ» °¡Áö°í ÀÖ´Ù°í ¹àÇû´Ù. ¿¹¸¦ µé¾î ÀÚÀ²ÁÖÇàÂ÷¿¡¼­ ´Ü¼øÈ÷ ÀÚµ¿Â÷³ª ÀÚÀü°Å À̹ÌÁö¸¦ ±¸ºÐÇÏ´Â °Í »Ó¸¸ ¾Æ´Ï¶ó À̵éÀÇ ¿òÁ÷ÀÓ±îÁö ÀνÄÇÒ ¼ö ÀÖ´Ù.

¶ÇÇÑ ÀϹÝÀûÀÎ ±³À° ½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ ¹ü¿ë ÄÄÇ»ÆÃº¸´Ù ÃÖ´ë 1,000¹è ´õ ¿¡³ÊÁö È¿À²ÀûÀÌ´Ù.

ÀÎÅÚÀº Loihi Å×½ºÆ® Ĩ¿¡ ´ëÇØ 2018³â »ó¹Ý±âºÎÅÍ ÀΰøÁö´É ¹ßÀü¿¡ ÃÊÁ¡À» µÐ ÁÖ¿ä ´ëÇÐ ¹× ¿¬±¸ ±â°ü¿¡ Á¦°øÇÒ °ÍÀ̶ó°í ¹àÇû´Ù.

 

ÀÌ ±â»çÀÇ ÀÇ°ß º¸±â
³×¿À¸¶Àεå / 17-09-27 12:16/ ½Å°í
ÁÁÀº Á¤º¸ °¨»çµå¸³´Ï´Ù.
ÀÎÅõ¸Æ½ºKR / 17-10-01 18:35/ ½Å°í
¸Å¿ì°ü½É °¡¿ä !!

¾ðÁ¦Âë ³ª¿ÀÁÒ .! ±â´ë°¡ µÇ¿ä !

¿å½É ³ª¼­¿ä !
ÀÎÅõ¸Æ½ºKR / 17-10-02 15:34/ ½Å°í
À½ ! °ü½É °¡´Âµ¥. !

µû·Î ¸»°í ÅëÇÕ ÀÏüÇü !! °í¹Ðµµ ȸ·Î »ç¿ëÇØ¼­ Å©°Ô ´ëÆø ÁÙÀϼö ÀÖÀ¸¸é »ý»ê ´Ü°¡ Àý¾àµµ±â °¡°Ýµµ ³·Ãß´Â ¹æ¹ý ¾ø³ª¿ä.

ÄÚ¾î Å©±â¸¦ ÁÙÀ̰í È¿À²¼ºÀ» ³ôÀ̰í. ÇÏ¸é ¿©·¯°Ô ³¢¿ö ³Ö¾îµµ »ó°ü ¾ø´Âµ¥. !!

°í¹Ðµµ °øÁ¤ µé¾î °¡¸é ¿ø°¡ Àý°¨È¿°ú ÀÖ´ÙÁÒ . ±¸Á¶¸¦ ´Ü¼øÈ­ ½ÃÄÑ ÀÏüÇüÀ¸·Î ¸¸µé¸é. ¼öÁ÷À¸·Î ½Î¾Æ ¿Ã¸®´Â ±â¼ú »ç¿ëÇÏ¸é ¼º´ÉÀÌ ´õ ÁÁ´Ù ÇÏ´øµ¥.

¹ÝµµÃ¼ ĨÀ» ¿©·¯ °³¸¦ º¹ÃþÀ¸·Î ¿Ã·Á¼­ ¸¸µé¼ö ÀÖ´Ù¸é Á¤¸» ÁÁÀº Á¦Ç°À̶ó°í ¸»ÇÏ°í ½ÍÀºµ¥ . µû·Î µû·Î µé¾î°¡´Â ÇüÅ´ ¹®Á¦°¡ ÀÖÁÒ !!
ÀÎÅõ¸Æ½º / 17-10-02 15:37/ ½Å°í
°³ÀÎÀûÀ¸·Î Á¤¸» ¸¾¿¡ µå³×¿ä. !!

±×·±µÇ . ¼öÆòÀ¸·Î ¸»°í ¼öÁ÷À¸·Î ½Î¾Æ ¿Ã¸®´Â ¹ÝµµÃ¼ ±â¼úÀ» Ȱ¿ëÇßÀ¸¸é ÁÁ°Ú¾î¿ä !!

¼öÆòÀ¸·Î ÆîÄ¡¸é ¸éÀûÀÌ ³Ê¹« ³Ð¾îÀú¼­. ¼öÁ÷À¸·Î ½Î¾Æ ¿Ã¸®´ø°¡ º¹Ãþ±¸Á¶¸¦ »ç¿ëÇÏ´Â ¹ÝµµÃ¼ ĨÀÌ ³ª¿ÔÀ¸¸é ÁÁ°Ú¾î¿ä..

´Ð³×ÀÓ lock
ºñȸ¿ø

º¸µå³ª¶ó ¸¹ÀÌ º» ´º½º
º¸µå³ª¶ó ¸¹ÀÌ º» ±â»ç

º¸µå³ª¶ó Ãֽбâ»ç
[09/26] ¾ÆÀÌÆ¼ºí·ç x À̺£ÀÌ 11Àϰ£ ÃÊ´ëÇü ¼îÇÎ Æä½ºÆ¼¹ú 'ºò½º¸¶Àϵ¥ÀÌ' ÇÁ·Î¸ð¼Ç  
[09/26] ÃÖ´ë 25% ÇÒÀÎ+Ưº° ÇýÅÃ! G¸¶ÄÏ »ï¼º °¶·°½ÃºÏ5 ÇÁ·Î NT960XHA-K51A ºò½º¸¶Àϵ¥ÀÌ ÁøÇà  
[09/26] ÀÌ¿¥ÅؾÆÀÌ¿£¾¾ÀÇ °ø½Ä À¯Åë ºê·£µå PALIT, ¿£ºñµð¾Æ ÁöÆ÷½º °ÔÀÌ¸Ó Æä½ºÆ¼¹ú ¶ß°Å¿î ¿­±â ¼Ó ¼º·á  
[09/26] ¿£ºñµð¾Æ, Çö´ëÀÚµ¿Â÷±×·ì°ú AI ±â¹Ý ¸ðºô¸®Æ¼ Çõ½Å À§ÇÑ AI ÆÑÅ丮 ±¸Ãà Çù·Â  
[09/26] ¿£ºñµð¾Æ, »ï¼º°ú ±Û·Î¹ú Áö´ÉÇü Á¦Á¶ Çõ½Å À§ÇØ AI ÆÑÅ丮 ±¸Ãà  
[09/26] ¿£ºñµð¾Æ, ´ëÇѹα¹ Á¤ºÎ ÁÖ¿ä ±â¾÷µé°ú ÇÔ²² AI ÀÎÇÁ¶ó¿Í »ýÅÂ°è ±¸Ãà  
[09/26] ¿£ºñµð¾Æ, SK±×·ì°ú AI ÆÑÅ丮 ±¸ÃàÀ¸·Î ±¹³» Á¦Á¶ µðÁöÅÐ Çõ½Å °¡¼ÓÈ­  
[09/26] Á¤¿ø¿£½Ã½º, 11¹ø°¡ ¡®±×·£µå ½ÊÀÏÀý¡¯ ¸Â¾Æ HP ³ëÆ®ºÏ ÇÑÁ¤ ÇÒÀÎ À̺¥Æ® ÁøÇà  
[09/26] ±×¶óºñƼ, 2025 Çï·Î DDC ¼­ºêÄÃó Æä½ºÆ¼¹ú ¡®¶ó±×³ª·ÎÅ© üÇèÁ¸¡¯ ¿ÀÇÂ!  
[09/26] ¶ó¹Ù¿þÀ̺ê-¸®¾ó¹ÌÅÍ µöÆäÀÌÅ© ¸ð´ÏÅ͸µ ¹× ´ëÀÀ ¾÷¹«Çù¾à ü°á  
[09/26] ±×¶óºñƼ, ÃâǰÀÛ 18Á¾ ½Ã¿¬ Áß½ÉÀÇ ¡®G-STAR 2025¡¯ ºÎ½º µðÀÚÀÎ °ø°³!  
[09/26] ¿¡¾î¸ÞÀÌµå ÆÄ¼¼ÄÚ °¡Àü, Áö¸¶ÄÏ ºò½º¸¶Àϵ¥À̼­ ÃÖ´ë 30% ÇÒÀÎ  
[09/26] G¸¶ÄÏ ºò½º¸¶Àϵ¥ÀÌ 11¹ø°¡ ±×·£µå ½ÊÀÏÀý ASUS ÀÎ±â ³ëÆ®ºÏ Ư°¡ ÇÁ·Î¸ð¼Ç ÁøÇà!  
[09/26] ÄÚ³ª¹ÌµðÁöÅп£ÅÍÅ×ÀÎ¸ÕÆ® ¡®¸ÞÅ»±â¾î ¼Ö¸®µå ¥Ä: ½º³×ÀÌÅ© ÀÌÅÍ¡¯, ¿Â¶óÀÎ ¸ÖƼÇ÷¹ÀÌ ¸ðµå ¡®FOXHUNT¡¯ Ãß°¡  
[09/26] ¸£³ëÄÚ¸®¾Æ, °í°´ °¨»çÁ¦ ¡®¸£³ë ¸Þ¸£½Ã À§Å©' ÁøÇà..¿¬¸»±îÁö °í°´¿¡ ¸ÅÁÖ »õ·Î¿î ¼±¹° ÁõÁ¤  
[09/26] ÄÜÁø¿ø, ¡®2025 ÄְܼÔÀÓ °³¹ßÀÚ ÄÁÆÛ·±½º¡¯ °³ÃÖ  
[09/26] MSI, ¼º¼ö ÆË¾÷½ºÅä¾î¼­ 111 ´Ü 1½Ã°£ G¶óÀ̺ê ÁøÇࡤ¡¤AI ³ëÆ®ºÏ Ư°¡ ÆÇ¸Å  
[09/26] LGÀüÀÚ À¥ ¿¹´É ¡®´õ·´(The Love) ÇÁ·ÎÁ§Æ®¡¯, À¯Æ©ºê Á¶È¸¼ö 120¸¸ Âï°í tvN¼­ ¿Â¿¡¾î  
[09/26] Á¤¿ø¿£½Ã½º, G¸¶ÄÏ ¿Á¼Ç ¡®ºò½º¸¶Àϵ¥ÀÌ¡¯ ¸Â¾Æ HP ³ëÆ®ºÏ ´ëÆø ÇÒÀÎ Çà»ç ½Ç½Ã  
[09/26] ¡®½Â¸®ÀÇ ¿©½Å: ´ÏÄÉ¡¯, ¸¾½ºÅÍÄ¡¿Í Äݶ󺸷¹ÀÌ¼Ç ½Ç½Ã!  
·Î±×ÀÎ | ÀÌ ÆäÀÌÁöÀÇ PC¹öÀü
Copyright NexGen Research Corp. 2010