NVIDIA Developer v285.86 Driver
 Ã³·± ¹Ìµð¾î·Î±×°¡±â
 Á¶È¸ : 1238 , 2011/12/09 20:54
÷ºÎ ÆÄÀÏÀÌ ¾ø½À´Ï´Ù

º¸µå³ª¶ó ÀÚ·á½ÇÀº Àü¿ë °í¼Óȸ¼±À¸·Î ÃÖ´ë 100MbpsÀÇ Ãʰí¼Ó ´Ù¿î·Îµå¸¦ Á¦°øÇÕ´Ï´Ù
IE9 »ç¿ëÀÚ´Â ´Ù¿î·Îµå°¡ ÀÀ´äÇÏÁö ¾ÊÀ»°æ¿ì µµ±¸-¿É¼Ç-»èÁ¦ Ŭ¸¯ÇÏ¿© ij½Ã »èÁ¦ÈÄ Å¬¸¯Çϼ¼¿ä

   XP       XP 64bit       Vista/7       Vista/7 64bit   

2011³â 12¿ù 6ÀÏ ¾÷µ¥ÀÌÆ®µÈ NVIDIA Developer v285.86 µå¶óÀ̹ö ÀÔ´Ï´Ù.
CUDA Toolkit 4.1(RC2)ÀÌ ¸±¸®Áî µÈ ¹öÀüÀÔ´Ï´Ù.

Geforce/ION/Quadro/Tesla DesktopÀ» Áö¿øÇÕ´Ï´Ù.

LINUX
   LINUX 32   
   LINUX 64   

MAC OS X
   MAC OS X   

CUDA Toolkit • C/C++ compiler
• Visual Profiler
• GPU-accelerated BLAS library
• GPU-accelerated FFT library
• GPU-accelerated Sparse Matrix library
• GPU-accelerated RNG library
• Additional tools and documentation

Try the new compiler!
• New LLVM-based compiler delivers up to 10% faster performance for many applications

New & Improved ¡°drop-in¡± acceleration with GPU-Accelerated Libraries
• Over 1000 new image processing functions in the NPP library
• New cuSPARSE tri-diagonal solver up to 10x faster than MKL on a 6 core CPU
• New support in cuRAND for MRG32k3a and Mersenne Twister (MTGP11213) RNG algorithms
• Bessel functions now supported in the CUDA standard Math library
• Up to 2x faster sparse matrix vector multiply using ELL hybrid format
• Learn more about all the great GPU-Accelerated Libraries

Enhanced & Redesigned Developer Tools
• Redesigned Visual Profiler with automated performance analysis and expert guidance
• CUDA_GDB support for multi-context debugging and assert() in device code
• CUDA-MEMCHECK now detects out of bounds access for memory allocated in device code
• Parallel Nsight 2.1 CUDA warp watch visualizes variables and expressions across an entire CUDA warp
• Parallel Nsight 2.1 CUDA profiler now analyzes kernel memory activities, execution stalls and instruction throughput
• Learn more about debugging and performance analysis tools for GPU developers on our CUDA Tools and Ecosystem Summary Page

Advanced Programming Features
• Access to 3D surfaces and cube maps from device code
• Enhanced no-copy pinning of system memory, cudaHostRegister() alignment and size restrictions removed
• Peer-to-peer communication between processes
• Support for resetting a GPU without rebooting the system in nvidia-smi

New & Improved SDK Code Samples
• simpleP2P sample now supports peer-to-peer communication with any Fermi GPU
• New grabcutNPP sample demonstrates interactive foreground extraction using iterated graph cuts
• New samples showing how to implement the Horn-Schunck Method for optical flow, perform volume filtering, and read cube map texture


 
2


 
   ÀÌ °Ô½Ã¹°ÀÇ ´ñ±Û º¸±â
·Î±×ÀÎ | ÀÌ ÆäÀÌÁöÀÇ PC¹öÀü
Copyright NexGen Research Corp. 2010