IBM ڻ Ŵ(LLM) ǰ Ʈ(Granite) 3.2 ߴ. Ʈ ۰ ȿ̸ ǿ ΰ(AI) Ͻ ȿ âϱ IBM ̴ַ.
Ʈ 3.2 ̽(Hugging Face) Ǵ ġ 2.0 ̼ ִ. Ϻ IBM ӽx.ai(IBM watsonx.ai), ö(Ollama), øƮ(Replicate), LM Ʃ 밡ϸ. (RHEL) AI 1.5 ҽ Ŀ´Ƽ ο ̴. ֿ :
ؼ ۾ ο (VLM, vision language model: ̹ ؽƮ óϵ AI ), ʼ ġũ DocVQA, ChartQA, AI2D OCRBench[1] 3.2 11B ȽƮ 12B ϰų ̻ ߴ. IBM dz н ͻ ƴ϶ ü ҽ Ŭ(Docling) Ȱ 8,500 PDF óϰ 2,600 ռ -亯 ߽ óϴ VLM ɷ ״.
3.2 2B 8B Ǵ ߷ ‘ (Chain of thought)’ , ߷ Ȱȭϰų Ȱȭ ȿ ȭ ִ. 8B ٸ [2] ̳ Ʒϵ(ArenaHard) ī̺(AlpacaEval) νƮ ġũ ڸ ߴ. , Ʈ 3.2 8B ο ߷ Ȯ(inference scaling) AIME2024 MATH500 ߷ ġũ Ŭε 3.5-ҳ Ǵ GPT-4o Ը ɿ ϵ ϴ.[3]
Ʈ 3.1 ϸ鼭 ũ⸦ 30% Ʈ (Granite Guardian) ȭ ̴. 3.2 ȣ νϰ, ϴ ȭ ŷڵ(verbalized confidence) ο Եƴ.
Ʈ 3.2 ۰ ǿ AI ϱ IBM Ʈ ȭ ־ ߿ ̷. , ߷ ' ' , ۾ ʿ ƴϸ ǻ ʿϴ. ̿ IBM α ' ' Ȱȭ Ǵ Ȱȭ ִ ߴ. ۾ ߷ ۵ϹǷ ʿ ϸ ִ. , Ʈ 8B ߷ Ȯ ٸ ߷ ǥ ߷ ġũ Ը ū ɰ ϰų ̸ ɰϴ Ÿ. ߷ Ȯ IBM ֿ оߴ.[4]
IBM Ʈ 3.2 νƮƮ, 巹 Բ ִ 2 ̷ ִ ð迭 Ÿ̴Ÿӹͼ(TTM, TinyTimeMixers) (1000 ̸ Ű) Ѵ. ̴ , , ȹ Ʈ м ̴.
IBM AI (Sriram Raghavan) λ “ AI ô ǻ ̵ ִ ȿ, ɼ, ǿ뼺 ȭΰ ”̶, “ ַǿ IBM ֽ Ʈ ó AI ټ, ȿ, AI ü ġ ̴µ ־ ٰ Ѵ” ߴ.
|